Peraturan am silogisme: contoh penggunaan, definisi, urutan dan rasional

Isi kandungan:

Peraturan am silogisme: contoh penggunaan, definisi, urutan dan rasional
Peraturan am silogisme: contoh penggunaan, definisi, urutan dan rasional
Anonim

Peraturan umum silogisme dan angka logik membantu dengan mudah membezakan kesimpulan yang betul daripada yang salah. Jika dalam proses analisis mental ternyata pernyataan itu sepadan dengan semua peraturan, maka secara logiknya betul. Latihan dalam membangunkan kemahiran menggunakan peraturan ini membolehkan anda membentuk budaya berfikir.

Takrifan umum silogisme dan jenis istilah

Peraturan silogisme - definisi umum silogisme dan istilah
Peraturan silogisme - definisi umum silogisme dan istilah

Peraturan silogisme mengikut definisi umum istilah ini. Konsep ini merupakan salah satu bentuk pemikiran deduktif, yang dicirikan oleh pembentukan kesimpulan daripada dua pernyataan (disebut premis). Bentuk yang paling biasa dan primitif ialah silogisme kategori yang mudah dibina atas 3 istilah. Sebagai contoh ilustrasi, kesimpulan berikut boleh diberikan:

  1. Premis pertama: "Semua sayur adalah tumbuhan."
  2. Premis kedua: "Labu ialah sayuran."
  3. Kesimpulan: “Oleh itu, labu adalahtumbuhan.”

Istilah kecil S ialah subjek pertimbangan logik yang disertakan dalam kesimpulan. Dalam contoh yang diberikan - "labu" (subjek kesimpulan). Oleh itu, bungkusan yang mengandunginya dipanggil yang lebih kecil (nombor 2).

Istilah pertengahan, pengantara M terdapat dalam premis, tetapi bukan dalam kesimpulan ("sayuran"). Premis dengan pernyataan tentang dia juga dipanggil yang tengah (nombor 1).

Istilah utama P, dipanggil predikat kesimpulan ("tumbuhan"), ialah pernyataan yang dibuat tentang subjek, yang merupakan premis utama (nombor 3). Untuk memudahkan analisis dalam logik, istilah yang lebih besar diletakkan dalam premis pertama.

Dalam pengertian umum, silogisme kategori yang mudah ialah inferens subjek-predikat yang mewujudkan hubungan antara istilah kecil dan besar, dengan mengambil kira hubungannya dengan istilah pertengahan.

Penggal pertengahan boleh mempunyai kedudukan yang berbeza dalam sistem petak. Dalam hal ini, 4 angka dibezakan, ditunjukkan dalam rajah di bawah.

Peraturan silogisme - angka silogisme
Peraturan silogisme - angka silogisme

Hubungan logik yang menunjukkan hubungan istilah ini dipanggil mod.

Peraturan silogisme dan maknanya

Jika hubungan antara premis (mod) dibina secara logik, kesimpulan yang munasabah boleh dibuat daripadanya, maka mereka mengatakan bahawa silogisme itu dibina dengan betul. Terdapat peraturan khas untuk mengenal pasti kesimpulan deduktif yang salah. Jika sekurang-kurangnya salah satu daripadanya dilanggar, maka silogismenya tidak betul.

Terdapat 3 kumpulan peraturan silogisme: peraturan istilah, premis dan peraturan angka. Kesemuanyaada dua belas. Apabila menentukan sama ada silogisme itu betul, seseorang boleh mengabaikan kebenaran premis itu sendiri, iaitu kandungannya. Perkara utama ialah membuat kesimpulan yang betul daripada mereka. Untuk membuat kesimpulan menjadi betul, adalah perlu untuk menyambung dengan betul istilah yang lebih besar dan lebih kecil. Oleh itu, bentuk (hubungan antara istilah) dan kandungan silogisme juga dibezakan. Jadi, kenyataan “Harimau adalah herbivor. Domba adalah harimau. Oleh itu, domba jantan adalah herbivor dalam kandungan premis pertama dan kedua adalah palsu, tetapi kesimpulannya betul.

Peraturan silogisme kategori mudah ialah:

1. Peraturan untuk syarat:

  • "Tiga Syarat".
  • "Taburan penggal pertengahan".
  • "Sambungan kesimpulan dan premis".

2. Untuk bungkusan:

  • "Tiga pertimbangan kategori".
  • "Ketiadaan kesimpulan dengan dua pertimbangan negatif."
  • "Kesimpulan negatif".
  • "Penghakiman Peribadi".
  • "Butiran kesimpulan."

Untuk setiap angka logik, peraturan mereka sendiri digunakan (hanya terdapat empat daripadanya), diterangkan di bawah.

Terdapat juga silogisme kompleks (sorit), yang terdiri daripada beberapa silogisme yang mudah. Dalam rantaian struktur mereka, setiap kesimpulan berfungsi sebagai premis untuk mendapatkan kesimpulan seterusnya. Jika, bermula dari yang kedua, premis kecil dalam ungkapan itu ditinggalkan, maka silogisme sedemikian dipanggil Aristotelian.

Malah di Greece purba, silogisme dianggap sebagai salah satu alat pengetahuan saintifik yang paling penting, kerana ia membantu menghubungkan konsep. Tugas utama orang berimanpembinaan saintifik kesimpulan adalah untuk mencari konsep tengah, berkat pensilogan dijalankan. Hasil daripada gabungan konsep formal dalam minda, seseorang dapat mengetahui perkara sebenar dalam alam semula jadi.

Sebaliknya, silogisme terdiri daripada konsep yang menyamaratakan sifat objek. Jika konsep dibina secara tidak betul, seperti dalam contoh harimau dan domba jantan, maka silogisme tidak akan tepat.

Kaedah untuk menyemak penegasan

Peraturan silogisme - carta pai
Peraturan silogisme - carta pai

Terdapat 3 kaedah praktikal untuk menyemak ketepatan silogisme dalam logik:

  • penciptaan gambar rajah bulat (imej jilid) dengan premis dan kesimpulan;
  • mengarang contoh balas;
  • menyemak ketekalan silogisme dengan peraturan am dan peraturan angka.

Cara yang paling jelas dan kerap digunakan ialah yang pertama.

Peraturan 3 istilah

Peraturan silogisme - peraturan tiga istilah
Peraturan silogisme - peraturan tiga istilah

Peraturan silogisme kategori ini adalah seperti berikut: mesti ada tepat 3 istilah. Kesimpulan logik dibina berdasarkan hubungan istilah yang lebih besar dan lebih kecil dengan purata. Jika bilangan istilah lebih besar, maka kesamaan lengkap mungkin berlaku di antara sifat objek yang berbeza makna, yang ditakrifkan sebagai istilah tengah:

Sabit ialah alatan tangan. Gaya rambut ini adalah tocang. Gaya rambut ini ialah alatan tangan.”

Dalam kesimpulan ini, perkataan "jalinan" menyembunyikan dua konsep berbeza - alat untuk memotongherba dan jalinan yang ditenun daripada rambut. Oleh itu, terdapat 4 konsep, bukan tiga. Akibatnya ialah penyelewengan makna. Peraturan umum silogisme ini adalah salah satu peraturan utama dalam logik.

Jika terdapat lebih sedikit istilah, maka adalah mustahil untuk membuat sebarang kesimpulan daripada premis tersebut. Contohnya: “Semua kucing adalah mamalia. Semua mamalia adalah haiwan. Di sini boleh difahami secara logik bahawa hasil inferens akan menjadi kesimpulan bahawa semua kucing adalah haiwan. Tetapi secara formal, kesimpulan sedemikian tidak boleh dibuat, kerana hanya terdapat 2 konsep dalam silogisme.

Peraturan taburan untuk silogisme min

Maksud peraturan kedua silogisme kategori adalah seperti berikut: bahagian tengah istilah mesti diedarkan dalam sekurang-kurangnya satu premis.

“Semua rama-rama terbang. Beberapa serangga terbang. Sesetengah serangga ialah rama-rama.”

Dalam kes ini, istilah M tidak diedarkan di dalam premis. Tidak mungkin untuk mewujudkan hubungan antara istilah yang melampau. Walaupun kesimpulannya betul dari segi semantik, ia secara logiknya tidak betul.

Peraturan untuk menghubungkan kesimpulan dan premis

Peraturan ketiga istilah silogisme mengatakan bahawa istilah dalam kesimpulan akhir mesti diedarkan dalam premis. Berhubung dengan silogisme sebelumnya, ia akan kelihatan seperti ini: Semua rama-rama terbang. Sesetengah serangga adalah rama-rama. Sesetengah serangga terbang.”

Pilihan salah, melanggar peraturan silogisme mudah: “Semua rama-rama terbang. Tiada kumbang adalah rama-rama. Tiada lalat kumbang.”

Peraturan Petak (RP) 1: 3pertimbangan kategorikal

Peraturan pertama premis silogisme berikutan daripada perumusan semula definisi konsep silogisme kategori yang mudah: mesti ada 3 pertimbangan kategori (positif atau negatif), yang terdiri daripada 2 premis dan 1 kesimpulan. Ia menggemakan peraturan istilah pertama.

Penghakiman kategori difahamkan sebagai pernyataan di mana penegasan atau penafian mana-mana harta atau atribut objek (subjek) dibuat.

PP 2: tiada kesimpulan dengan dua negatif

Peraturan Petak - Peraturan Petak Kedua
Peraturan Petak - Peraturan Petak Kedua

Peraturan kedua yang mencirikan hubungan antara premis penaakulan logik mengatakan: adalah mustahil untuk membuat kesimpulan daripada 2 premis yang bersifat negatif. Terdapat juga perumusan semula yang serupa: sekurang-kurangnya satu premis dalam ungkapan mestilah afirmatif.

Malah, kita boleh mengambil contoh ilustrasi ini: “Bujur bukan bulatan. Segi empat bukan bujur. Tiada kesimpulan logik boleh dibuat daripadanya, kerana tiada apa yang boleh diperoleh daripada korelasi istilah "bujur" dan "persegi". Istilah melampau (lebih besar dan lebih kecil) dikecualikan daripada bahagian tengah. Oleh itu, tiada hubungan yang pasti antara mereka.

PP 3: keadaan kesimpulan negatif

Peraturan ketiga: kesimpulannya negatif hanya jika salah satu premis juga negatif. Contoh pemakaian peraturan ini: “Ikan tidak boleh hidup di darat. Minnow adalah ikan. Ikan kecil tidak boleh hidup di darat.”

Dalam pernyataan ini, istilah pertengahandikeluarkan daripada yang lebih besar. Dalam hal ini, istilah ekstrem ("ikan"), yang merupakan sebahagian daripada yang tengah (pernyataan kedua) dikecualikan daripada istilah ekstrem kedua. Peraturan ini jelas.

PP 4: Peraturan Penghakiman Peribadi

Peraturan premis keempat adalah serupa dengan peraturan pertama silogisme kategori mudah. Ia terdiri daripada yang berikut: jika terdapat 2 pertimbangan peribadi dalam silogisme, maka kesimpulannya tidak boleh diperolehi. Pertimbangan peribadi difahamkan sebagai keputusan di mana bahagian tertentu objek kepunyaan sekumpulan objek dengan ciri umum dinafikan atau disahkan. Biasanya ia dinyatakan sebagai pernyataan: "Sesetengah S bukan (atau, sebaliknya, adalah) P".

Contoh ilustrasi peraturan ini: “Sesetengah atlet mencipta rekod dunia. Sesetengah pelajar adalah atlet." Adalah mustahil untuk membuat kesimpulan daripada ini bahawa beberapa "sebilangan pelajar" mencipta rekod dunia. Jika kita beralih kepada peraturan kedua istilah silogisme, kita dapat melihat bahawa istilah pertengahan tidak diedarkan dalam premis. Oleh itu, silogisme sedemikian adalah tidak betul.

Apabila pernyataan merupakan gabungan afirmatif tertentu dan premis negatif tertentu, maka hanya predikat pernyataan negatif tertentu akan diedarkan dalam struktur silogisme, yang juga salah.

Jika kedua-dua premis secara peribadi negatif, maka dalam kes ini peraturan premis kedua dicetuskan. Oleh itu, sekurang-kurangnya satu premis dalam pernyataan itu mesti mempunyai sifat penghakiman umum.

PP 5:kekhususan kesimpulan

Menurut peraturan premis silogisme kelima, jika sekurang-kurangnya satu premis adalah penaakulan tertentu, maka kesimpulannya juga menjadi khusus.

Contoh: “Semua artis bandar mengambil bahagian dalam pameran itu. Sebahagian daripada pekerja perusahaan itu adalah artis. Beberapa pekerja perusahaan mengambil bahagian dalam pameran itu. Ini ialah silogisme yang sah.

Contoh kesimpulan negatif peribadi: “Semua pemenang menerima anugerah. Beberapa anugerah sekarang tidak mempunyai. Sebahagian daripada mereka yang hadir bukanlah pemenang.” Dalam kes ini, kedua-dua subjek dan predikat penghakiman negatif umum diedarkan.

Peraturan angka pertama dan kedua

Peraturan angka silogisme kategori telah diperkenalkan untuk menerangkan secara visual kriteria ketepatan pertimbangan yang hanya menjadi ciri untuk angka ini.

Peraturan angka pertama mengatakan: premis terkecil mestilah afirmatif, dan yang terbesar mestilah umum. Contoh silogisme yang salah untuk angka ini:

  1. “Semua manusia adalah haiwan. Tiada kucing adalah manusia. Tiada kucing adalah haiwan." Premis kecil adalah negatif, jadi silogismenya salah.
  2. "Sesetengah tumbuhan tumbuh di padang pasir. Semua teratai adalah tumbuhan. Beberapa teratai tumbuh di padang pasir." Dalam kes ini, adalah jelas bahawa premis terbesar adalah penghakiman peribadi.

Peraturan yang digunakan untuk menerangkan angka kedua silogisme kategori: premis terbesar hendaklah umum dan salah satu premis hendaklah penolakan.

peraturansilogisme - peraturan angka kedua
peraturansilogisme - peraturan angka kedua

Contoh pernyataan palsu:

  1. "Semua buaya adalah pemangsa. Sesetengah mamalia adalah pemangsa. Sesetengah mamalia adalah buaya." Kedua-dua premis adalah afirmatif, jadi silogisme adalah tidak sah.
  2. "Sesetengah orang mungkin ibu. Tiada lelaki boleh menjadi ibu. Sesetengah lelaki tidak boleh menjadi manusia." Kebanyakan premis adalah pertimbangan peribadi, jadi kesimpulannya adalah salah.

Peraturan bahagian ketiga dan keempat

Peraturan ketiga angka silogisme adalah berkaitan dengan taburan istilah kecil silogisme. Sekiranya pengedaran sedemikian tidak terdapat dalam premis, maka ia tidak boleh diedarkan dalam kesimpulan sama ada. Oleh itu, peraturan berikut diperlukan: premis terkecil mestilah afirmatif, dan kesimpulan mestilah pernyataan tertentu.

Contoh: “Semua cicak adalah reptilia. Sesetengah reptilia bukan ovipar. Sesetengah ovipar bukan reptilia. Dalam kes ini, minor premis bukan afirmatif, tetapi negatif, jadi silogisme tidak betul.

Peraturan silogisme - angka keempat
Peraturan silogisme - angka keempat

Angka keempat adalah yang paling tidak biasa, kerana mendapatkan kesimpulan berdasarkan premisnya adalah luar biasa untuk proses penghakiman. Dalam amalan, angka pertama digunakan untuk membina inferens jenis ini. Peraturan untuk angka ini adalah seperti berikut: dalam angka keempat, kesimpulannya tidak boleh secara amnya afirmatif.

Disyorkan: